The immune microenvironment of HPV-negative oral squamous cell carcinoma from never-smokers and never-drinkers patients suggests higher clinical benefit of IDO1 and PD1/PD-L1 blockade

J.-P. Foy1,2,3, C. Bertolus3, M.-C. Michallet1, S. Deneuve4, R. Incitti5, N. Bendriss-Vermare1, M.-A. Albaret1,5, S. Ortiz-Cuaran1,5, E. Thomas5, A. Colombe2, C. Py5, N. Gadot2, J.-P. Michot6, J. Fayette7, A. Viari5, B. Van den Eynde8, P. Goudot3, M. Devouassoux-Shisheboran9, A. Puisieux1, C. Caux1, P. Zrounba4, S. Lantuejoul2,6 & P. Saintigny1,2,7*

1Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon, 69008; 2Department of Translational Research and Innovation, Centre Léon Bérard; 3Department of Oral and Maxillo-Facial Surgery, University of Paris 6, Pitié-Salpêtrière Hospital, Paris; 4Department of Surgery, Centre Léon Bérard; 5Synergie Lyon Cancer-Platform of Bioinformatics-Gilles Thomas, Centre Léon Bérard; 6Department of Biopathology, Centre Léon Bérard; 7Department of Medicine, Centre Léon Bérard, France; 8Ludwig Institute for Cancer Research, Brussels Branch and de Duve Institute, Université catholique de Louvain, B-1200, Brussels, Belgium; 9Department of Pathology, Croix-Rousse Hospital, Hospices Civils de Lyon, Claude Bernard University Lyon 1, Lyon, France

*Correspondence to: Dr Pierre Saintigny, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Department of Medicine, Centre Léon Bérard, Cancer Research Center of Lyon, 28 rue Laennec, 69373 Lyon Cedex 08, France. Tel: +33-0-469856097; Fax: +33-0-478782868; E-mail: pierre.saintigny@lyon.unicancer.fr

Background: Never-smokers and never-drinkers patients (NSND) suffering from oral squamous cell carcinoma (OSCC) are epidemiologically different from smokers drinkers (SD). We therefore hypothesized that they harbored distinct targetable molecular alterations.

Patients and methods: Data from The Cancer Genome Atlas (TCGA) (discovery set), Gene Expression Omnibus and Centre Léon Bérard (CLB) (three validation sets) with available gene expression profiles of HPV-negative OSCC from NSND and SD were mined. Protein expression profiles and genomic alterations were also analyzed from TCGA, and a functional pathway enrichment analysis was carried out. Formalin-fixed paraffin-embedded samples from 44 OSCC including 20 NSND and 24 SD treated at CLB were retrospectively collected to perform targeted-sequencing of 2559 transcripts (HTG EdgeSeq system), and CD3, CD4, CD8, IDO1, and PD-L1 expression analyses by immunohistochemistry (IHC). Enrichment of a six-gene interferon-γ signature of clinical response to pembrolizumab (PD-1 inhibitor) was evaluated in each sample from all cohorts, using the single sample gene set enrichment analysis method.

Results: A total of 854 genes and 29 proteins were found to be differentially expressed between NSND and SD in TCGA. Functional pathway analysis highlighted an overall enrichment for immune-related pathways in OSCC from NSND, especially involving T-cell activation. Interferon-γ response and PD1 signaling were strongly enriched in NSND. IDO1 and PD-L1 were over-expressed and the score of response to pembrolizumab was higher in NSND than in SD, although the mutational load was lower in NSND. IHC analyses in the CLB cohort evidenced IDO1 and PD-L1 overexpression in tumor cells that was associated with a higher rate of tumor-infiltrating T-cells in NSND compared with SD.

Conclusion: The main biological and actionable difference between OSCC from NSND and SD lies in the immune microenvironment, suggesting a higher clinical benefit of PD-L1 and IDO1 inhibition in OSCC from NSND.

Key words: oral cancer, squamous cell carcinoma, never smokers never drinkers, immune microenvironment, programmed death-ligand 1, indoleamine 2,3-dioxygenase 1
Introduction

Head and neck squamous cell carcinomas (HNSCC) are the seventh most common cancer worldwide and second to lung cancer as smoking-related cancer [1]. However, 10% to 15% HNSCC are diagnosed in never-smokers and never-drinkers patients (NSND). Three subgroups of NSND with HNSCC have been described: young to middle-aged men with oropharyngeal SCC, young women with oral tongue SCC (OTSCC) and elderly women with gingival SCC [2]. Although human papillomavirus (HPV) has been associated with the increasing incidence of oropharyngeal cancer in young men over the past decades [3], it is not involved in oral carcinogenesis [4] and therefore does not account for the increasing incidence of OTSCC in young women [5]. Moreover, recent studies have not yet identified any other potentially oncogenic virus in oral cavity [6].

Despite the fact that OSCC arising in NSND and smokers drinkers (SD) are epidemiologically different, recent studies emphasized that they share most common genomic alterations, such as TP53 and FAT1 mutations, as well as similar miRNA expression profiles [6–8]. However, while a fraction of HNSCC (7%) may be attributable only to alcohol drinking [9], information in alcohol habits is missing in those studies. Moreover, some studies excluded elderly people [7], which represent another well-established subgroup of NSND with OSCC [2, 10].

Herein, after careful selection of patients based on smoking and alcohol habits independently of patients’ age, we show in four independent cohorts that the main biological and actionable difference between OSCC from NSND and SD lies in the immune microenvironment. Notably, OSCC from NSND were characterized by the following: (i) an enrichment of interferon-γ (IFN-γ) and PD1 signaling pathways; (ii) a higher intratumor CD8+ T-cell infiltrate; (iii) an overexpression of IDO1 and PD-L1 by tumor cells; and (iv) higher score of response to pembrolizumab. These features suggest a higher clinical benefit of PD-1/PD-L1 and/or IDO1 inhibition in this subgroup of patients.

Materials and methods

Patients

Four independent cohorts including a total of 212 patients suffering from OSCC were established from a rigorous selection of patients based on alcohol and tobacco habits. The discovery cohort was identified from The Cancer Genome Atlas (TCGA). Three independent cohorts were used as validation cohorts: two cohorts, named GEO1 and GEO2, were established from GSE39366 and GSE65858, respectively, and downloaded from the “Gene Expression Omnibus” (GEO) repository and a third validation cohort included patients treated at Centre Léon Bérard cancer center (CLB, Lyon, France). Written informed consent was obtained from all patients from CLB and the study was approved by the institutional review board.

In each cohort, HPV-positive samples were excluded. The criteria used for selecting NSND and SD patients are detailed in supplementary Table S1, available at *Annals of Oncology* online and led to the inclusion of 117 (ratio NSND/SD: 57/60), 25 (9/16), 26 (7/19), and 45 (20/25) patients from the TCGA (discovery set), GEO1, GEO2, and CLB (validation sets) cohorts, respectively.

Molecular profiling in oral samples

In the discovery cohort from TCGA, normalized gene-read counts generated from RNA-sequencing, somatic mutation and copy number alterations were downloaded using the TCGA2STAT R-package and cBioPortal, and were available in 114 (54 NSND; 60 SD), 47 (21 NSND; 26 SD), and 114 (56 NSND; 58 SD) patients respectively. Normalized expression data of 237 proteins and phosphoproteins generated by reverse-phase protein array (level 4) were retrieved from The Cancer Proteome Atlas (TCPA) for 82 patients (45 NSND and 37 SD).

In the three validation cohorts (GEO1, GEO2, and CLB), gene expression profiles were generated using microarray experiments (GEO1 and GEO2) and targeted-RNA sequencing in FFPE samples using the HTG EdgeSeq technology (CLB). Finally, array-based gene expression profiles of normal oral mucosa from 39 smokers and 40 never-smokers (GSE17913) and of 18 cell lines derived from human normal oral keratinocytes exposed or not to ethanol and nicotine (GSE57634).

Details on data processing are provided in the supplementary Table S2, available at *Annals of Oncology* online.

Functional pathway analysis

Gene expression profiles of OSCC from TCGA were compared between NSND and SD using the EBSeq R-package. The resulting list of transcripts was used to perform a gene set enrichment analysis (GSEA). The single sample gene set enrichment analysis (ssGSEA) was used to compute individual enrichment scores. The search tool for the retrieval of interacting genes/proteins (STRING) was used to build a functional network using differentially expressed proteins between SD and NSND after downloading data from TCPA. Additional and detailed methodology is provided in the supplementary Methods, available at *Annals of Oncology* online.

Immunohistochemistry

Tissue sections (3-μm thick) from 45 FFPE blocks of OSCC resected at CLB were used for IHC. IHC was carried out using an automated immunostainer (Ventana Discovery XT, Roche, Meylan, France) with antibodies against PD-L1 (using clones SP142 and 28.8), CD3, CD8, CD4, p16, and IDO1. Antibodies and procedure is detailed in supplementary Methods, available at *Annals of Oncology* online. PD-L1 and IDO1 expression by tumor and immune cells were evaluated blindly to clinical information using 1%, 5%, and 10% thresholds, positive internal control represented by T cells and dendritic cells, respectively. The CD3, CD4, or CD8+ T-cell infiltrate was scored as absent or low (i.e. low) versus moderate to marked (i.e. high), and the presence of T cells within the tumor lobules or located at the interface between lobules and stroma was recorded. An automated image analysis image of IDO1, PDL1 (clone 28.8), and CD8 immunostaining was also carried out independently (HistoWiz Inc., NY 11226) and was compared with the evaluation by the pathologist. Detection of HPV6 and HPV16 was done in p16-positive tumors, using DNA in situ hybridization (ISH) (supplementary Methods, available at *Annals of Oncology* online).

Statistical analysis

Data statistical analysis was carried out using GraphPad Prism version 6.00 (San Diego, SA). Unpaired Wilcoxon test and Fisher’s exact test were carried out to compare continuous and categorical values respectively between SD and NSND. Disease-free survival (DFS) distributions were estimated using the Kaplan–Meier method and compared with the log-rank test between NSND and SD. DFS is defined for each cohort in Supplementary Online. Unpaired Wilcoxon test and Fisher’s exact test were considered to be statistically significant. For multiple testing, a false-discovery rate was computed in order to adjust *P*-value.
Results

OSCC in NSND are more common in elderly females and harbor less genomic alterations

Clinical and pathological characteristics of OSCC were compared between NSND and SD in four independent cohorts (TCGA, GEO1, GEO2, and CLB) (supplementary Table S3, available at Annals of Oncology online). Markedly, female and elderly patients (>65 years) were more common in NSND from TCGA (P < 0.0001; P = 0.0021), GEO1 (P = 0.0003; P = 0.0090), GEO2 (P = 0.0138; P = 0.0008), and CLB (P < 0.0001; P = 0.0006). No statistical difference in DFS was observed between NSND and SD (supplementary Figure S1, available at Annals of Oncology online).

Overall, OSCC from NSND harbored significantly less mutations (P = 0.0006; Figure 1A) and copy number alterations (P = 0.0005; Figure 1B) compared with SD. To gain more insight into differences in genomic profiles between NSND and SD from TCGA, somatic mutation of 12 783 genes and copy number values of 22 618 genes were compared between NSND and SD. While the mutational profiles were not significantly different (Figure 1C), 46 genes presented different copy number values using a false discovery rate (FDR) < 0.01 (Wilcoxon test). Notably, amplification of 11q13, including CCND1, was less frequent in NSND compared with SD (P < 0.0001) (Figures 1D and E).

The main biological difference between OSCC from NSND and SD lies in the immune microenvironment

In the TCGA data set, we identified a set of 219 overexpressed and 635 underexpressed genes in NSND compared with SD (called from now on “NSND gene set”) (FDR < 0.05; log2FC > 1). To validate this NSND gene set, we computed its enrichment score in OSCC from NSND than from SD in both GEO1 (n = 25) and GEO2 (n = 26) cohorts, as well as in 79 oral normal mucosa and 18 cell lines derived from normal human oral keratinocytes. The score was significantly higher in OSCC from NSND than from SD in both GEO1 (P = 0.0053) and GEO2 (P = 0.0089) (Figure 2A and B). Strikingly, no difference was observed in normal oral mucosa between smokers and non-smokers (P = 0.3651) (Figure 2C), as well as in normal oral keratinocytes treated with ethanol and/or nicotine versus untreated ones (Kruskall-Wallis; P = 0.2667; supplementary Figure S2, available at Annals of Oncology online). These results indicate that the difference we report in OSCC affecting NSND versus SD patients is not related to the effect of smoking and/or alcohol on normal mucosa or keratinocytes.
In order to gain more insight into the biological differences between NSND and SD, we carried out a GSEA in the TCGA cohort. With an FDR < 0.05, 28 canonical pathways and 49 biological processes from GO, were significantly enriched in NSND compared with SD. Many of these pathways/processes were immune related, especially involving T-cell activation and differentiation. Markedly, OSCC from NSND were also strongly enriched for pathways related to IFN-γ and PD1-signaling (Figure 2D).

The expression of 237 proteins and phosphoproteins was compared between NSND and SD from TCPA, which resulted in the identification of 29 proteins differentially expressed (Wilcoxon, FDR < 0.05). Using the STRING tool, 27 of 29 proteins differentially expressed between NSND and SD using STRING (E). Functional immune landscape of OSCC in NSND and SD: the enrichment score for 526 different immune modules [11] was computed using ssGSEA and were compared between NSND and SD from TCGA. The 25 most significant modules differentially enriched and their annotation (NK, T-cell, myeloid, interferon) are shown.

Figure 2. Functional pathway analysis in OSCC. (A–C) The enrichment score of the NSND gene set (defined in TCGA by 219 and 635 over- and underexpressed genes, respectively, in OSCC from NSND), was computed in two independent cohorts of OSCC [(A) GEO1 and (B) GEO2], as well as in a set of normal oral mucosa (GSE17913) (C); the score was compared in NSND versus SD using a Mann–Whitney test. (D and E) In the TCGA cohort, NSND were characterized by a significant enrichment for the IFN-γ and PD1 signaling pathways using GSEA (D) as well as a functional network including 27 of 29 proteins differentially expressed between NSND and SD using STRING (E). (F) Functional immune landscape of OSCC in NSND and SD: the enrichment score for 526 different immune modules [11] was computed using ssGSEA and were compared between NSND and SD from TCGA. The 25 most significant modules differentially enriched and their annotation (NK, T-cell, myeloid, interferon) are shown.

Overexpression of IDO1 and PD-L1, increased tumor-infiltrating CD8+ T-cells, and higher score of response to pembrolizumab are features of OSCC from NSND

In the discovery cohort (TCGA), IDO1 (FDR < 0.0001), and PD-L1 (FDR = 0.0038) were overexpressed in NSND compared with SD. Of note, PD-L1 was also overexpressed in NSND at protein
Consistently, IDO1 was significantly overexpressed in NSND compared with SD in GEO1 (\(P = 0.0080\)) and GEO2 (\(P = 0.0476\)), whereas PD-L1 was statistically overexpressed in NSND in GEO1 (\(P = 0.0116\)) but not in GEO2 (\(P = 0.2086\)) (Figure 3A and B). These immune-related differences between NSND and SD were further validated in the CLB cohort using targeted RNA-seq. of 2559 genes (HTG) and immunohistochemistry (IHC). Among the five tumors found to be p16 positive, one was HPV positive by ISH and was therefore excluded from the analysis. Moreover, three SD samples did not pass HTG quality control and one NSND sample did not generate sufficient product to sequence, resulting in 44 and 40 samples for IHC and HTG data analysis respectively. IDO1 and PD-L1 were found to be overexpressed in NSND (\(P = 0.0010\) and \(P = 0.0014\) respectively) (Figure 3A and B). Expression of IDO1, PD-L1, CD3, CD4, and CD8 was then evaluated by IHC (supplementary Table S4, available at Annals of Oncology online; Figure 4). Using a 1% expression threshold to define PD-L1-positive samples, we observed a significant overexpression of PD-L1 in tumor cells in NSND compared with SD (clone Sp142: \(P = 0.0270\); clone 28.8: \(P = 0.0144\)). Of note, PD-L1-positive immune cells were mostly adjacent to tumor cells expressing PD-L1. Interestingly, two patterns of strong IDO1 staining (>10%) were observed in OSCC: some tumors had a strong and homogenous staining (NSND: 40% versus SD: 0%), whereas in other tumors, a strong staining was only found in delimited areas of the tumor (NSND: 60% versus SD: 17%) with a co-localization of IDO1-positive dendritic cells. Using these two patterns to identify IDO1-positive samples, IDO1 was overexpressed in tumors from NSND compared with SD (\(P = 0.0046\)). Scoring the T-cell infiltrate as low versus high, high scores were more common in tumors from NSND for CD3 (\(P = 0.0112\)), CD4 (\(P = 0.0154\)) and CD8 (\(P = 0.0285\)), while no significant difference was found in peritumor areas. This evaluation was validated by an automated image analysis (supplementary Figure S3 and S4, available at Annals of Oncology online).
The association of co-overexpression of PD-L1/IDO1 with a high T-cell infiltrate suggested a higher clinical benefit of PD1/PD-L1 blockade in NSND [12, 13]. Thus, we computed the enrichment score of a six-gene response signature to pembrolizumab in HNSCC [14], in the four independent cohorts (Figure 3C). Interestingly, scores were higher in NSND than in SD in TCGA (P = 0.0012), GEO1 (P = 0.0271), GEO2 (P = 0.0181), and CLB cohorts (P = 0.0002).

Discussion

Immunotherapy is providing unprecedented advances in management of HNSCC [12, 14, 15], but the challenge is now to understand in which clinical setting to use these agents in order to provide greater clinical benefit for patients [16]. Herein, we report that HPV-negative OSCC in NSND is molecularly distinct from the disease affecting SD and is mainly characterized by its immune microenvironment. Notably, a significant enrichment for IFN-γ and PD1 pathways, an overexpression of IDO1 and PD-L1 as well as a higher CD8+ T-cell tumor infiltrate were observed in NSND than in SD. Altogether, these features provide a strong rational for immunotherapy in NSND with OSCC, especially by targeting PD-L1 and IDO1.

Using a functional pathway analysis based on gene and protein expression to identify actionable pathways in NSND, we observed a significant enrichment in immune-related pathways in NSND.
changes induced by smoking are various and complex [17]. They may play a role during oral carcinogenesis through the inhibition of Langerhans cells maturation, by impairing T-cell recruitment and activation via the abrogation of their antigen presentation capability to CD4+ T cells [18], which is consistent with our result. In contrast, a higher rate of infiltrating CD8+ T-cells have been associated with smoking in other tumor settings, including nonsmall cell lung cancers [19]. These conflicting results across tumor types underlines that the effect of smoking on immunity response may depend on many variables including the tissue of origin [17]. Moreover, alcohol, a recognized risk factor for oral cancer but not for lung cancer [20], may also affect with the immune system and explain the differences between tumor types [21].

In line with the increased IFN-γ activation previously observed in HNSCC from NSND [22], we observed that OSCC from NSND were strongly enriched for IFN-γ response. In our study, we focused on IDO1 and PD-L1, both induced by IFN-γ, because they are targetable and were consistently overexpressed in NSND in several cohorts, at the RNA and protein levels. IDO1 is an enzyme involved in tryptophan catabolism, resulting in an immunosuppressive local environment. Overexpression of IDO1 is a mechanism of immune escape [23] and IDO1 inhibition may exert antitumor effects via the activation of anticancer immuno-surveillance [24]. Elevated expression of IDO1 has been also observed in pretreatment melanomas from responding patients to PD-L1 inhibition [13]. Together with our results, these observations suggest a rational for combination therapies in OSCC from NSND.

The higher rate of tumor infiltrating T cells especially T-CD8, the overexpression of PD-L1 and IDO1 and the enrichment of IFN-γ transcriptomic signatures observed in OSCC from NSND, are features that have also been reported as predictors of response to PD1/PD-L1 inhibitors [12]. The lower mutational load in NSND versus SD is expected and linked to the absence of exposure to carcinogenic effects of tobacco and alcohol. This might appear conflicting with the results of our study [12]. However, recent observations in melanomas indicate that a relatively low mutational load does not preclude a tumor response to PD1/PD-L1 inhibition [25]. In a recent study, nonsynonymous mutational burden did not correlate with response to PD-1 blockade in patients with HNSCC treated by PD-1 blockade [26]. While the mutational load may contribute to the clinical response to immunotherapy through neoantigen-specific T-cell responses, this is not always the case [27]. HPV-positive HNSCC harbor fewer mutations [28] and present a higher response to anti-PD1 when compared with HPV-negative HNSCC [14, 15, 29]. In the case of viral-induced carcinogenesis, viral antigens likely represent dominant antigens that stimulate T cells reactivity and contribute to the inflamed tumor phenotype and IFN-γ activation. These events are predictive of response to PD1/PDL1 blockade, without the need for mutation-derived neoantigens [30]. Thus, as observed in HPV-related diseases, we may suggest that the potent IFN-γ-mediated immune response in HPV-negative OSCC from NSND is linked to a dominant tumor antigen independent from the mutation load.

In addition to genomic-based biomarkers, immune signatures of response to PD1/PD-L1 inhibition have been recently proposed [25, 31]. In particular, a six IFN-γ-related genes signature of response to pembrolizumab has been established in metastatic HNSCC [14]. Using the HTG technology, that allows the generation of targeted gene expression profiling from a single FFPE section, we were able to show that this signature was significantly enriched in OSCC from NSND compared with SD, strengthening the potential benefit of PD1/PD-L1 inhibition in NSND.

In conclusion, the main biological and actionable difference between OSCC from NSND and SD lies in the immune microenvironment. Markedly, OSCC in NSND are characterized by an enrichment of IFN-γ and PD1 pathways, a higher intratumor T-cell infiltrate, an overexpression of IDO1 and PD-L1, and higher score of response signature to pembrolizumab. More studies are required to evaluate the impact of smoking and alcohol status on response to PD1/PD-L1 pathway inhibition.

Acknowledgements

We acknowledge Jean-Claude Gérard and Salim Aissaoui (HTG Molecular Diagnostics) for their assistance to perform RNA-targeted sequencing, as well as Elise Malandain (Department of Biopathology, Centre Léon Bérard, Lyon, France) for her technical assistance.

Funding

This work was supported by the Cancéropôle Lyon Auvergne Rhône-Alpes (CLARA) 2014-2016 Structured Program (Grant number CVPPRCAN000153/International Head and Neck Prevention-Act-IHPACT to P.S.) and the LYeric Grant INCa-DGOS-4664. JPF was supported by a fellowship grant from the Fondation pour la Recherche Médicale (FRM), the Association Française pour le Développement de la Stomatologie (AFDS) and from the Agence Régionale de Santé (année-recherche 2015-2016).

Disclosure

PS has received research funding from Roche. CC has received research funding from Roche and Bristol Myers Squibb (BMS). SL has served as a consultant/advisor for BMS, Merck Sharp and Dohme (MSD), Roche, AstraZeneca and Boehringer-Ingelheim and has received research funding from BMS. JF has received honoraria from AstraZeneca. BVDÉ is co-founder and owns stock in iTeos Therapeutics and has served as a consultant/advisor for Amgen (SAB member). RI owns stock in OncoDiag. All remaining authors have declared no conflicts of interest.

References

